
Lecture 21 - 4/2/2024

We started the lecture by discussing a new type of try block, specifically the
try with resources statement. You simply put resources like Scanners and
PrintWriters inside parens following the try reserved word and they will
automatically be closed once the try block finishes:

try(Scanner input = new Scanner(inFile);
PrintWriter output = new PrintWriter(args[1])){

//code for try
}

Today’s lecture is the start of a portion of the course that gave me literal
hell when I was encountering it for the first time. Anecdotes aside, today we
began to talk about inheritance. In Java there can be super classes or
subclasses of another class. Every class can only have 1 parent. Take the
following hierarchy diagram:

Object
|
|
v

BankAccount
|
/\

| |
| |
v v

Checking Savings

These are the classes that can be found in Lecture 22 on Codio. Object is the
highest class in the hierarchy all Java Classes implicitly inherit from Object,
the toString() method that you overrode in Card.java and Deck.java is such an
example. Speaking of the word overrode, that is a new word! You already know
about method overloading, but now we need to define method overriding. To
override a method is to reimplement a method that you inherited from a
superclass. The method signature stays the same in this case as well.

To establish the relationship between classes we use the “extends” keyword in
our class definition. Note that you can only extend one class since Java
classes can only have 1 parent.

public class SubClass extends SuperClass {
//instance variables

public SubClass(<parameterList>){
//TODO implement below

}
//methods and other stuff

}

When we establish a relationship between classes like this we tend to say that
“SubClass IS A SuperClass” For example, a checking account is a bank account,
same for savings account. The inverse is not true though, a BankAccount is NOT
a SavingsAccount and so on. This will be important when we discuss
Polymorphism.

When we establish a class relationship like this, we must pay extra attention
to the constructor of the subclass, if we wish to properly initialize the
instance variables that we inherit, we will need to invoke the constructor of
the super class, and it has to be the first thing we do so consider an
implementation of the constructor above:

public SubClass(<parameterList>){
super(<necessaryParameters>);
//other statements

}

We can also use the super keyword to access methods from the superclass. In the
Lecture 22 codio files there is an example where we write super.withdraw(<x>)
This statement called the withdraw method from the BankAccount.

Finally we can talk about Polymorphism, which means “many forms” This is the
pinnacle of this inheritance stuff, if we had multiple types of BankAccounts
and we wanted a method to update all of them, we can simply use the BankAccount
type since it is the super class of all subsequent classes that are versions of
a BankAccount. This is also true when it comes to declaring Objects.

BankAccount a = new BankAccount(“Griffin”);
BankAccount b = new Checking(“Emily”, 0.5);
BankAccount c = new Savings(“Cannon”, 1.2);

This is great and all but we must be careful of the issues with Compile Time
Polymorphism, or Static Polymorphism.

At Compile Time Java only sees the declared type, in all the above cases this
would be BankAccount but any attempt to call methods from the instantiated type

will not compile. So the following are examples of statements that do not
compile:

1. b.monthly();
2. c.daily();

But all the following do compile:
1. a.withdraw(<x>);
2. b.withdraw(<x>);

Finally we can talk about Runtime Polymorphism or Dynamic Polymorphism. With
the two above statements, they compile but at runtime they do different things,
this is because the instantiated types are different thus a will call
BankAccount’s version of withdraw() and b will call Checking’s withdraw.
Interfaces were mentioned but not talked about in detail so I will reserve them
for next time.

Lecture 22 - 4/4/2024

This lecture consisted of primarily review with some extension on our
discussion of exceptions primarily with regard to two key aspects:

1. Creation of Custom Exceptions

2. Exception Propagation

We can actually make custom exceptions that derive from other exceptions to
serve our own purposes, we saw in lecture the OverdrawException that we made to
handle the case where a person attempts to withdraw more money than they have
within their BankAccount:

It is important to analyze so I will paste it in its entirety here but
obviously this snippet was originally written by Professor Cannon:

public class OverdrawException extends IllegalArgumentException{

public OverdrawException(String m){
super(m);

}

public OverdrawException() {
super("Dude, you need money");

}
}

When an exception is thrown there is a message that is displayed to the user,
in this example we allow for both a custom message as well as a default message
if none is provided. Just like instantiating objects we can do the same with
these Exception objects too with:

OverdrawException e = new OverdrawException(“WOMP WOMP”);

We can then launch the exception at the user by writing the following:

throw e;

Trivally, we can combine the two lines and do:

throw new OverdrawException(“WOMP WOMP”);

Also it doesn’t really matter which Exception we use as the parent since they
all act the same but it is convention to use the one that is most closely
related to the new exception that you are writing.

We also talked about exception propagation, consider the following scenario:

main() -> methodA() -> methodB() -> methodC()

What this is saying is that main calls methodA which calls methodB which calls
methodC.

Say an exception is thrown in methodC() we have the following options in terms
of resolution:

1. Handle immediately
2. Handle later
3. Handle never

While you may think handling now is the best option, it is actually better to
procrastinate and handle the exception later because there may be more valuable
information lower in the call stack that will allow us to handle the exception
in a more appropriate manner. So say we wish to handle the exception in methodA
then:

main() -> methodA() -> methodB() throws Exception -> methodC()throws Exception

You will need to acknowledge the exception (required if checked, conventionally
if unchecked) in all higher method calls that proceed the method that handles
the exception.

